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Free Vibration Analysis of Aboveground LNG-Storage Tanks by
the Finite Element Method

Jin-Rae Cho", Jin-Kyu Lee, Jeong-Mok Song
School of Mechanical Engineering, Pusan National University

Suk-Ho Park, Joong-Nam Lee
Samsung Heavy Industries Co., Ltd.

Recently, in proportion to the increase of earthquake occurrence-frequency and its strength
in the countries within the circum-pan Pacific earthquake belt, a concept of earthquake-proof
design for huge structures containing liquid has been growing up. This study deals with the
refinement of classical numerical approaches for the free vibration analysis of separated struc­
ture and liquid motions. According to the liquid-structure interaction, LNG-storage tanks
exhibit two distinguished eigenmodes, the sloshing mode and the bulging mode. For the sloshing
-mode analysis, we refine the classical rigid-tank model by reflecting the container flexibility.
While, for the bulging-mode analysis, we refine the classical uncoupled structural vibration
system by taking the liquid free-surface fluctuation into consideration. We first construct the
refined dynamic models for both problems, and present the refined numerical procedures.
Furthermore, in order for the efficient treatment of large-scale matrices, we employ the Lanczos
iteration scheme and the frontal-solver for our test FEM program. With the developed program
we carry out numerical experiments illustrating the theoretical results.

Key Words: LNG-Storage Tank, Fluid-Structure Interaction, Finite Element Analysis, Slosh­
ing Mode, Bulging Mode, Structure Deformation, LNG Free-Surface Fluctuation.

1. Introduction

As an uncontaminated fuel, the need of LNG
(Liquefied Natural Gas) has greatly grown up,
and accordingly its storage tanks are on the trend
of a large size. However, unexpected structural
failure of such huge structures by earthquakes
may result in not only severe environmental con­
tamination but also tremendous loss of human
and financial resources. In the countries within
the circum-pan Pacific earthquake belt, an earth­
quake-proof structural design is a matter of pri­
mary concern. In order for such an earthquake-
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proof design, accurate eigenmode analysis and
seismic analysis with reliable earthquake record
are of a great importance.

In the liquid-structure interaction system com­
posed of LNG container, relatively dense LNG
and other subsidiary components, the eigen­
behavior is characterized by the sloshing and
bulging modes. The former is called a displace­
ment-type eigenmode characterizing by the LNG
free-surface motion, while the latter is called an
acceleration-type eigenmode dominated by the
container deformation. According to a weak
dynamic coupling between two modes, analysts
used to separate the whole integrated dynamic
system into two uncoupled regions, a container
for the bulging mode and a liquid for the sloshing
mode.

Best to our memory, theoretical and experimen­
tal studies on the eigen behavior of liquid-storage
tanks were done by Haroun (1983, 1985 and
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1996) and Ohayon et a1. (1995), and the finite

element analysis of eigenmodes of such tanks was

carried out by Okada et a1. (1975), Tedesco et a1.

(1989) and Khai (1993). In particular, Okada et

a1. considered the entire dynamic system consist­

ing of LNG and shell-like container as a coupled

integration system for the finite element analysis.

As for the computation of equivalent mass added

to the structure, Gupta (1976), Rajasankar et a1.

(1993) and Zienkiewicz et a1. (1991) introduced

their numerical techniques. A recent study on the

added mass of viscous fluid-structure interaction

problems by Conca et a1. (1997) is also worth to

mention.

These studies can be largely classified into two,

some for the coupled entire liquid-structure sys­

tem and others for the uncoupled structure and

liquid. In the former, the container flexibility as

well as the liquid free-surface fluctuation are

inherently reflected. But, in the latter, both inter­

ference effects have been neglected, owing to the

numerical difficulty and complexity.

This paper is concerned with the refinement of

the latter classical approaches. For this goal, we

reline the classical rigid-tank model, for the liq­

uid sloshing motion, by including the container

flexibility. As well as, we take the liquid free­

surface fluctuation into the added-mass compu­

tation, for the structure bulging motion. Through

the numerical experiments with a model LNG­

storage tank, we compute eigen frequencies and

modes by the refined procedures and carry out the

comparison of the relined methods with classical

approaches.

2. LNG-Storage Tanks and
Dynamic Modeling

2.1 LNG-storage tanks
Figure I shows a general aboveground LNG­

storage tank. A shell-like thin structure

manufactured by Ni-Cr steel is supported on the

ferrite layer mounted on the concrete base. In

order to avoid its vertical and horizontal rigid

movement, it is jointed with pre-tensioned anchor

bolts positioned uniformly in the circumferential

direction. A shell-like container consists of four

......._...

.-... ....
Fig. 1 A structure of above-ground LNG-stor­

age tank

parts, the base plate, the side shell, the upper

dome and the torus joining the side shell and the

upper dome. The relative thickness to the tank

radius of LNG-storage tanks in most engineering

applications is of 10-3 order, so the container is

ultra-thin structure.

An exterior concrete wall is for the sake of

protecting the container from various kinds of

external attacks. The bottom ferrite layer inserted

between the base plate and the concrete base plays

a role of shock absorbing and insulation. The

other ferrite powder filled up between the exterior

concrete wall and the side shell is just for insula­

tion.

Here, we exclude the exterior concrete wall and

the side ferrite powder from the eigenmode analy­

sis because the dynamic-interaction effect on the

LNG-storage tank by those components is of

negligible amount. In addition, since we are inter­

ested in the horizontal eigen-characteristics, we

simplify the bottom ferrite layer as a rigid layer

such that the base plate of shell-like container is

constrained such that no relative dynamic motion

with respect to the concrete base is allowed.

2.2 Dynamic model for the bulging mode and
FE approximation

As mentioned before, in the bulging mode the

deformation of container is dominated while the

free-surface fluctuation of interior LNG is feeble.

Based on this weak coupling between the two

modes (Haroun 1983, Haroun et al. (985), it has
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In order to construct the corresponding var­

iational statement of the eigenvalue problem (2),

we first define the triple vector-valued function

space V (Q) of admissible displacement fields

V(Q)={vE[Hl(Q)J3Iv=0 on JQD} (3)

Treating the dynamic spring forces by anchor

bolts as point loads, we obtain the variational

form of the problem (2): Find {wEIJ/, U (x) E V

(Q)} such that 'v' v E V (Q),

( elj (v) 0"1j (u) dQ +2J[Vr(k'u.) Jn}g n

=w2 rpvjujdQ- r pv. n ds (4)
}s; i.;

where {w, n (x)} denotes eigen sets corresponding

to the bulging mode.

Using three-dimensional isoparametric 20­

node cubic and IS-node tetrahedron elements, we

approximate the dynamic displacement fields:

where p denotes the density of the structure.

Furthermore, 0"1j and n indicate Cauchy stress­

tensor components and the outward unit vector

normal to the structure, respectively. The

hydrodynamic pressure pEL2(JQr) on the liquid

-structure interface JQr by interior LNG is trans­

formed into the equivalent mass added to the

structure, as described in Appendix I. The other

natural boundary condition is the dynamic spring

forces on U JQiJ by anchor bolts.
n

by denoting Nand Ii as a matrix containing

corresponding finite-element basis functions {qJk
(x) }~=l and the nodal vector, respectively. Corre­

sponding strain and stress tensors are written as

y

-:F,

F,

x

Fig. 2 Uniformaly arranged anchor bolts (9IEA X

2°) and the cantilever beam model

I/k~= ~I (sinzrf;n+cos2rf;n • sinZe)

L
+ EA cos2rf;n • cos2()

l/kY - L ( 2,1. • 2,1• • . 2e)n-Er cos IVn+ SIn IVn SIn

+ E~ sin2rf;n • cos 2 f) (I)

I/kz - Lsin2e + Lcos2
f)

n- EI EA

been traditional to split a liquid-structure interac­

tion system into two equivalent uncoupled

dynamic systems for separate container and liquid

regions.

In order to construct a reliable uncoupled

dynamic model for the bulging mode under con­

sideration, computation of accurate equivalent

added-mass of LNG and equivalent spring con­

stants of anchor bolts is an important step. The

classical numerical technique to compute added­

mass corresponding to the hydrodynamic effect is

now well established. The reader may refer to

Rajasankar et al. (1993) and Zienkiewicz and

Taylor (1991). Here, we refine it by including the

LNG free-surface fluctuation.

Referring to Fig. 2, we simplify the anchor

bolts as a cantilever beam of circular section, to

which we apply the unit load method to obtain

the component-wise equivalent spring constants

k~, k~ and k~ of the n-th anchor bolt given by

with a (3x6) divergence-like operator D defining

Cauchy strain tensor and the (6x6) three-dimen­

sional linear-elastic material matrix E containing

Lame constants fJ. and ;l.

Denoting the domain of shell-like container by

QEIJ/3, we write the dynamic equilibrium equa­

tions together with the essential and natural

boundary conditions (i, j, k=x, y, z and k; no

sum):

duh
) =DNii=Bii

O"(u h
) =EBii

(6)
(7)
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Substituting the finite element approximations
into the variational problem (4), we have the
general numerical eigenvalue problem:

(8)

Here, two matrices are defined respectively as

K = rBTEB dQ +L; (NTknN) n (9)I» n

Mb = ~pNTN dQ+Pl(HR)TS1I(HR)

(10)

z

)

liquid-Structure
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x

Fig. 3 Boundary definition of the half of LNG
region

The behavior of free-surface vibration of ideal
flow is governed by Laplace equation from the
continuity equation

(15)

(11)

(12)

rp: V(X; t) =\lrp

_ I 8rp
7}- -gat' on aQF

Defining the space of admissible potential func­
tions as V (Ql) = HI (QL) and applying the
boundary conditions specified in Eq. (13), we

and the corresponding boundary conditions
(Currie 1974)

\lrp' nl=- g~~2' on 8QF ]

\lrp' nl=vS . ni., on 8Q1 (13)

\l rp • ni,=0, on 8Qa and 8Qs

Here, QlE~3 and ni, are the LNG domain and
the outward unit vector normal to its boundary
(i. e., ni, • n = - I) respectively.

Here, for our study, we record the fundamental
relations associated with the simple harmonic
motion. First, taking the spatial integration to the

Euler equation (\lp+ Plv=O), we have

p(x; t)=-pl8rp(x; t)/8t, in Ql (14)

satisfying

Then, we can establish the alternative Helmholtz
equation and boundary conditions in terms of the
hydrodynamic pressure to Eqs. (12) and (13).

Second, using the fact of ( ~ = vz=\l rp • m., 7}- the
sloshing height of the LNG free-surface) and the
corresponding boundary condition in Eq. (13),

we have the relation given by

2.3 Dynamic model for the sloshing mode
and FE approximation

On the contrary to the bulging mode, in the
sloshing mode the free-surface fluctuation of
LNG prevails while the structure-deformation is
of negligible amount. And hence, it has been
conventional to assume it as a rigid-tank sloshing
(Haroun 1983). For the assessment on this classi­
cal model, Okada et al. (1975) and Khai (1993)

compared the eigen frequencies obtained by the
rigid-tank sloshing model and the coupled inte­
gration system. According to their results, it has
been found that the classical model is acceptable
for most engineering applications within the rela­
tive modeling error less than 1%. Differing from
them, we in this study directly refine the classical
model in order to account for the container
deformation and intend to examine the container­
deformation effect on the LNG sloshing mode.

Since our study aims at the horizontal eigen­
behavior, we consider a half of LNG region, as
depicted in Fig. 3, where boundary definition
together with corresponding boundary conditions
in terms of the velocity vectors, v of LNG and v,
of the structure, and the hydrodynamic pressure
are described. For the fluid motion, we assume
that the fluctuation of LNG is incompressible,
inviscid and irrotational (i. e. curl-free: \l X v=
0). Then, for the free-surface vibration of ideal
flow, there exists a potential function rp (x: t)

where kn denotes diag (k~, k~, k~) and Pl the
density of LNG. The RHS term in Eq. (10) is the
equivalent mass matrix of LNG added to the
structure. Its detailed numerical derivation is
given in Appendix A.I.
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M=l.-j (])T(]) ds, K=j 'V(])' 'V([J dQ,
g an, a;

H=j (])T(]) ds (19)
an,

{[KFFKFRJ _wz[M;:-MFF~FRJ}{ ~F} = {O} (20)
LFLR M. Mu epR 0

We note that the equivalent mass is also fre­
quency dependent, as described in Eq. (A 15).

(22)

(21)

KXI= diag (M) XI

T - 1_
uU=(;7u

where, the truncation operator Tn is constructed

with {ab 1M that are iteratively computed, as
shown in the flowchart. The truncated eigen-sys­
tern (21) is of relatively small size so that one can
easily obtain corresponding eigen-sets with usual

direct methods. Since the reader is familiar with
such numerical techniques, we leave the detailed
description to the reference (Bathe 1996).

Referring to the flowchart, in order to compute

XI and {al> .ed using the Lanczos method, we still
need full stiffness and mass matrices. In order to
avoid the need of large-scale storage, we utilize

the frontal solver and the mass-lumping tech­
nique, as depicted in Fig. 4. The mass matrix
becomes a diagonal matrix by means of the mass
-lumping technique, and hence its global storage

is reduced to N. Then, the computation of

3. Iterative Numerical Algorithm

For relatively small-size matrices of [K] and

[M], one can obtain eigen sets {w, u} by direct
methods such as the inverse or the forward itera­

tion techniques. But, in most engineering prob­
lems, these two matrices are large-scale so that it
may beyond the limit of computation capability

to handle whole array elements.
Fortunately, in many cases of structural vibra­

tion analysis, several lowest eigen sets are enough
for the acceptable dynamic behavior of the prob­
lem under consideration, and hence rapid and
efficient numerical algorithms such as the Lane­

zos iteration method, the subspace method and so
on are widely used. To implement our theoretical

results, we develop a test FEM program equipped
with the iterative numerical algorithm utilizing
the Lanczos method, the frontal solver and the

mass-lumping technique.
As is well known, the Lanczos iteration method

transforms the full (N X N) eigen-matrix system

(Ku=w2Mu) to the truncated (nxn) system (n

<N)

( 18)

(16)

{[KFFKFRJ _wz[M 0J}{ ~F}
KRFKRR 0 0 epR

= _[HFF HFRJ{~~}
HRFHRR Un

where each matrix is defined as

The detailed numerical derivation on correlating
the normal velocity with the potential function is

described in Appendix A.2. Along the procedure
in Appendix A.2 for transforming the dynamic
effect of the container deformation into the equiv­
alent mass matrix for the bulging mode, we finally

arrive at

obtain the variational form of the eigen-behavior

of the free-surface vibration problem (12): Find

{wEI)(, ep(x) EV (QL)} such that

j 'VX' 'Vep dQ-j X(vs ' nL)dsnL an,
wZj=- Xepds, V XE V (Qd
g an,

The above formulation involves the liquid-struc­
ture coupling, the second term in the LHS, but

which vanishes when we assume the rigid-tank

sloshing.
With the same finite elements used for the

bulging mode, we construct the finite element
approximations of potential functions and normal

velocities Un of the structure as follows

eph=(])ip, u~=-(us' nL)h=(])Un (17)

where (]) is a matrix containing finite-element

basis functions.
Splitting the global finite-element nodes into

those on the free-surface (denoted by F) and the
rest (denoted by R) and enlarging H matrix such

that the nodal vector Un on iJQ1 can be extended
to whole nodes in QL' we have

at each Lanczos iteration can be carried out by
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Table 1 Numerical data for the simulation

Material data Geometry data(cm)

Densitytkgf-sec-/crrr'). P 2.67 ( X 10-5) Container radius, R 2500

Ni-Cr Container height, H 3975.5

Steel
Young's modulus(kgf/crrr'}, E 7.0( X 105)

Side-shell thickness 5.15-1.65

Poisson's ratio, 11 0.3 Dome/torus thickness 1.65

LNG height, HLNG 3000

Density Anchor bolt diameter, d 3.6
LNG

(kgf-sec-/cm'}, PL
4.6 (X 10- 7)

Anchor bolt length, L 300

Angle, e 15°

Fig. 4 Flowchart for iterative numerical algorithm
employed in the test FEM program

the usual frontal solver because the RHS in Eq.
(22) is simplified to an element-wise load vector.

I, the interior LNG is filled up to the height of
HLNG, and the container and the anchor bolts are
manufactured by Ni-Cr steel. The side-shell
thickness varies continuously along the z-axis
ranging from 5.15cm at the bottom to 1.65cm at
the other end. Table I contains the material
properties of Ni-Cr steel and LNG and represen­
tative geometty data of the model LNG-storage
tank.

Referring to Figs. 8 and 9, we generate finite
element meshes for the container and the interior
LNG using three-dimensional quadratic ele­
ments. We made the same finite-element partition
on the common liquid-structure interfaces so that
the numerical treatment for converting the
hydrodynamic pressure to the added-mass for the
bulging mode and reflecting the shell deformation
in the sloshing mode is easily carried out.

...= ..T<tioB(M).,

~ ..it -Cltl't-I!...txt-b i~D

fl;=(ri<bg(M)i;)"' 1+---'

..., =x./jl,

Lanczos
Transformation

4. Numerical Results

For the numerical simulation of eigen-charac­
teristics of LNG storage tanks, we develop a test
FEM program equipped with the pre-mentioned
iterative numerical algorithm. In order to visual­
ize the numerical results and the geometry of
LNG-storage tanks, we utilize the pre- and post
-processing modules of the commercial ANSYS
software.

For the numerical experiments, we consider a
closed-type aboveground LNG-storage tank
capable of storing 6000kl LNG. Referring to Fig.

4.1 Results of the bulging mode
According to the numerical procedure de­

scribed in this paper, we calculate the added-mass
matrices. However, since it requires natural fre­
quencies a priori, as described in Appendix A.I,
we apply the sort of predictor and corrector
method, In other words, we first simulate the
bulging mode without the free-surface fluctua­
tion, in which the added-mass is frequency-in­
dependent, and next we obtain the added-mass
matrix and natural frequency corresponding to
each of the pre-computed natural frequencies for
the case without free-surface fluctuation.

Figure 5 shows the variations of total added-



Vibration Analysis of Aboveground LNG-Storage Tanks by the Finite Element Method 639

Fig. 5 Variations of the calculated total added-mass
to the natural frequency
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mass with respect to the natural frequency. When

the free-surface fluctuation is neglected, 61.7% of

the total LNG mass is added to the structure. On

the other hand, the total added-mass when the

free-surface sloshing is included varies along the

natural frequency, while it approaches that of the

case without the free-surface fluctuation. For a

reference, it drops to 60.9% of the total LNG mass

at the lowest natural frequency, and which is

relatively 1.3% smaller than the case without the

free-surface fluctuation.

Next, we examine the distributions of nodal

added masses on the side-shell interface. Accord­

ing to our assumption of ideal fluid-flow, the

added-mass component m, identically vanishes

on that surface. For the spatial distribution, we

diagonalize the added-mass matrix and assume

each diagonal value as the lumped mass at the

corresponding finite-element node. Since we uni­

formly partitioned the liquid-structure interface

along the axial and the circumferential directions,

respectively, this assignment makes sense.

Figure 6 presents respectively the vertical and

the sectional distributions of nodal added-mass

components, where the case with sloshing corre­

sponds to the distributions obtained by including

the free-surface fluctuation with the lowest natu­

ral frequency. From the vertical distributions

shown in Fig. 6(a), we see that the case with the

free-surface sloshing has non-zero added-mass at

the free surface. This implies that the correspond­

ing hydrodynamic pressure at that surface is not

zero, as given in Eqs. (14) and (15). On the other

hand. the x-cornponent exhibits cosine-type sec-

+-----="-------~x

(a) Vertical distributions (ID. at 0°)

y.

".~~.,.

»:.....
"

:::l

f
i
i-4-- ------L<::...--L--~--+-x

(b) X'r -secuonal distributions

Fig. 6 Vertical and sectional distributions of the
computed nodal masses

tional distribution while the y-cornponent shows

sine-type sectional distribution.
With the computed added-mass matrices for

both cases with and without the free-surface

sloshing (fluctuation), we calculate natural fre­

quencies up to forty natural modes (to retain

numerical errors in the considering lowest

modes) by the iterative numerical algorithm

presented in Fig. 4. In order to examine the effect

of the suitability of added mass, we consider two

additional mass-adding cases. For the method I.

we add the same 61.7% of the total LNG-mass as

the classical method such that the added-mass

components have cosine- and sine-type distribu­

tions shown in Fig. 6 (b) along the circumferen­

tial direction but the uniform distribution in the
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Table 2 The computed lowest natural frequencies (tad/sec) of bulging mode

Present method Rough analysis
Mode

With sloshing W/0 sloshing Method I Method II

7.82046 9.43351 10.53539
1st 7.99407

(-2.172 %) (18.007 %) (31.790 %)

12.82327 15.76890 17.63313
2nd 12.91134

(-0.682 %) (22.132 %) (36.571 %)

16.39349 20.16092 22.56515
3rd 16.47090

(-0.470 %) (22.403 %) (37.000 %)

17.77147 22.03941 24.44500
4th 17.84708

(-0.424 %) (23.490 %) (36.969 %)

24

22

!

• withsloshing
& wIosloshing

rough method I
rough method II

particularly by method II. This is solely owing to

the unsuitability of the spatial distribution of

added mass. The higher values in natural fre­

quencies are because the added-mass amount

unaffecting the bulging mode is involved in the

uniform spatial added-mass distributions.

Fig. 8 shows the mode-shapes corresponding to

four lowest natural frequencies obtained by the

present method with the liquid free-surface slosh­

mg.

2

mode

Fig. 7 Comparison of natural frequencies obtained
by the four different mass-adding methods

axial direction. While, for the method II, the same

amount of LNG-mass but with the uniform distri­

bution along the axial and the circumferential

directions is added.

Table 2 contains the computed results of four

lowest natural frequencies for the four different

mass-adding approaches, where the relative varia­

tions are calculated with respect to the case with

the liquid free-surface sloshing. Due to the rela­

tively bigger amount in total added mass, the case

without sloshing produces relatively lower natu­

ral frequencies compared to the case with slosh­

ing. However, the difference between both cases is

not considerable and furthermore it monotonical­

ly decreases as the natural frequency goes up. On

the other hand, the numerical results obtained by

the other two approaches are significantly higher

compared the values by the present methods,

4.2 Results of the sloshing mode

With the developed test FEM program accord­

ing to the theoretical and numerical results de­

scribed in this paper, we carry out the numerical

simulation for the sloshing mode with the uni­

formly partitioned finite-element mesh. We com­

pute the same number of natural frequencies as

the bulging mode, and we compare the numerical

results obtained by the rigid-tank and the flexible

-tank models.

Table 3 contains the comparative numerical

results of four lowest natural frequencies of the

both cases. Since the container-deformation

becomes smaller as the natural frequency goes

lower, as mentioned earlier, the difference in both

cases significantly decreases in proportion to the

decrease in the natural frequency. For our model

problem, the relative difference with respect to the

rigid tank is far less than I%, up to the fourth

eigenmode. The mode-shapes corresponding to

four lowest natural frequencies of the horizontal

sloshing eigen-behavior are depicted in Fig. 9.
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(a) First mode (b ) Second mode

(c) Th ird mode (d) Fourth mode

Fig. 8 Bulging mode shapes of four lowest natural frequencies in the structure motion

Table 3 Computed lowest natural frequencies

(rad/ sec)

Mode
Rigid Flexible Relative
tank tank difference

I 0.82727 0.82727 0 %

2 \.38023 1.38023 0 %

3 1.68254 1.68464 0.125 %

4 1.84968 1.85340 0.201 %

As one ca n infer from the deriv at ion process of

Append ix A. 2, the effect of container-deforma­

tion on the sloshi ng mode has different degrees of

intensity for different material , geometry data and

boundary co nd itio ns of liqu id-storage tank.

From the qu al itative point of view. the relative

co ntribution of added-mass by the conta iner

-deformat ion is clo sely proportion al to the rela­

tive flexib ilit y of the container to the interior
liquid.

5. Conclusions

This paper addresses the study on finite element

analysis of the hor izontal eigen-behavior of LNG

- storage tanks equ ipped with tighten ing ancho r

bolts . We f rst constructed two sep arate eigen

problems for the bulging mode and the slo shing

mode, respectively. In order to assure the model­

ing qu ality for the LNG-structure hydrod ynamic

interaction, we particularly took into considera­

tion of the container-deformation in the bulging

mode and the LNG free-surface fluctu at ion in the

added-mass computatio n.

On the other hand, for the numerical experi­

ment s we de veloped a test FEM program accord­

ing to our theoretical results, in which we

introd uced a n iter ation algorithm utilizing the

Lanczos technique and the frontal so lver for an

efficient treatm ent of inherent lar ge- scale

matrices.

Accord ing to the refinement of classical sim­

plified mod els for both eigen modes by incl ud ing

the two neglected effects. we found that both
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(a) First mode

(c) Third mode

(b) Second mode

(d) Fourth mode

Fig. 9 Sloshing mode shapes of four lowest natural frequencies in the LNG motion.

bulging and sloshing modes become frequency

-dependent eigen problems. In order to compute

frequency-dependent eigen frequencies and

modes of the sloshing mode, we employed a sort

of predictor and corrector numerical technique.

For the bulging mode. we first computed added

-mass matrix and analyzed its frequecy-wise

variation and spatial distributions for the cases

with and without the LNG free-surface fluctua­

tion. We observed that the difference in added

masses between both cases is remarkable at the

LNG free surface and in lower natural frequency

range. And the refined model produced the rela­

tively smaller total added masses and accordingly

relatively higher eigen frequencies. when compar­

ed to the classical model.

With the four different spatial added-mass

distributions, we carried out the comparative

numerical experiments. Compared to the present

method described in this paper, the two rough

methods produced eigen frequencies with consid­

erable error, owing to the inappropriate spatial

distribution of added mass, even though the same

total amount of mass was added. On the other

hand, the effect of LNG free-surface fluctuation

on the bulging mode diminished as the natural

frequency becomes higher.

From the numerical results of the sloshing

mode, we observed that the difference in eigen

frequencies between the classical rigid-tank

model and the present flexible-tank model pre­

vails in proportion to the decrease of frequency.

This frequency variation is reverse to that of the

bulging mode, however it is consistent well with

the physical interpretation. That is, the container

-deformation prevails while the LNG free-sur­

face fluctuation diminishes, as the natural fre­

quency becomes higher.
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Appendix

A.I Equivalent added-mass of LNG
Taking a time derivative to Eq. (18) together

with the fundamental relation given in Eq. (14)

leads to the alternative system of equations

(K-alM)j5=PL Hiin (AI)

Denoting (K - ci M) by S (w) and splitting the

global finite-element nodes into those (denoted

by I) on the liquid-structure interface 8Qr and the

rest (denoted by R), we have

[Sl! SrRJ{~r}=PL[H 0J{iin
} (A2)

SRI SRR PR 0 0 0

Applying the static condensation, we obtain the

relation at the interface between the

hydrodynamic pressure and the normal dynamic

acceleration of the structure given by

PI= PL[Sl! -SIRSilJSRI]-IHiin= PLS,IHiin (A3)

Next, we define the coordinate transformation

operator R which transforms a vector in Car­

tesian coordinate into the normal component to

the structure interface such that

Then, the finite element approximation of the

second term in the RHS of Eq. (4) indicating the

virtual work by the hydrodynamic pressure leads

to:

!
v~P~ ds=!, [<l>(Rv)F[(])(PLS,IH

anI oQ!

(Rii)) ]ds

= (Ry)T{!aQ,PL<l>T(]) dS}[S,I(HR)ii]

=PLyT(RTH)S,I(HR)ii (A5)

= - W2yT[PL (HR) TS,1 (HR>] i.i
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Transforming two nodal vectors UI and PI expres­
sed in Cartesian coordinates into normal nodal
vectors using the operator defined in Eq. (A4),
we have together with the relation (14)

(All)

(AI5)

(AI3)

(AlO)G=f !iFN dsag,

After the static condensation, we have

UI= - [(KII-aiMII)
- KIS(Kss- aiMss)-IKsI]-lGpI

=Q(CV)PI (AI2)

{:D=PLCV
2(RD)TQ(RD)

{::}

Then, It IS not hard to arrive at Eq. (20) by
substituting Eq. (A 15) into Eq. (18).

Next, we define a matrix operator (composed
of 0 and I) extending a nodal vector confined
within the liquid-structure interface to one
containing entire finite-element nodes in the liq­
uid domain such that, for any matrix multiplied

to ulag,

D : Aulag, -+ ADulgc (AI4)

Taking time derivative to Eq. (A 13) together
with the extension operator DT, we obtain

By applying the mass-lumping technique and
splitting the global finite element nodes over the
entire container domain Q into those (denoted by
I) on the liquid-structure interface and the rest
(denoted by S), we have

(A9)

f pv : n ds=f v'p ds (A7)
aQ, so;

A.2 Effect of the structure-deformation
Returning to the variational form (4), we re­

write the virtual work done by the hydrodynamic
pressure as

with the stiffness matrix K by the container and
anchor bolts and M indicating the first term in the
RHS of Eq. (10) together with G defined as

Here, (/) is the finite-element basis-matrix
introduced in Eq. (17) and H the symmetric
matrix defined in Eq. (19), respectively. The term
[ .] in the last line in above equation is the
frequency-dependent added-mass matrix M add

added to the structure.
From the definition of added-mass matrices

and the fact of (PlaQ,=PLg7j) by relating Eq. (14)
with Eq. (IS), the frequency-dependent term
a/Mp in Eq. (AI) can be converted to the fol­
lowing expressing the effect of the LNG free­
surface sloshing

PLga/MTj (A6)

Therefore, the frequency-dependence of added­
mass weakens as the natural frequency becomes
higher because the free-surface fluctuation height
7j significantly diminishes in proportion to the
increase of frequency.

with p in Cartesian coordinates and we approxi­
mate this vector using the basis matrix defined in
Eq. (5) such that

ph=Np (A8)

Then, the finite element approximation of the
problem (4) results in




